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Abstract:    Planning problems are challenging and complex in that they usually involve multiple stakeholders with multi-attribute 
preferences. Thus few, if any, planning tools are useful in helping planners to address such problems. Decision analysis is less 
useful than expected in dealing with planning problems because it overwhelmingly focuses on making single decisions for a 
particular decision maker. This paper describes the theoretical foundation of a planning tool called Decision Network, which aims 
to help planners to make multiple, linked decisions when faced with multiple stakeholders with multi-attribute preferences. The 
research provides a starting point for a fully-fledged technology that will be useful for dealing with complex planning problems. 
We first provide a general formulation of the planning problem that Decision Network intends to address. We then introduce an 
efficient solution algorithm for this problem, with a numerical example to demonstrate how the algorithm works. The proposed 
solution algorithm is efficient, allowing computerization of the planning tool. We also demonstrate that the diagrammatic repre-
sentation of Decision Network is more efficient than that of a decision tree. Therefore, when dealing with challenging, complex 
planning problems, using Decision Network to make multiple, linked decisions may yield more benefits than making such deci-
sions independently. 
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1  Introduction 
 

Planning is an important research topic in the 
field of artificial intelligence (Ghallab et al., 2004; 
Pollock, 2006). However, in real world situations, 
most planning problems are complex and challenging, 
not only because the problems themselves are am-
biguous and difficult to define, but also because they 
involve multiple stakeholders with multi-attribute 
preferences. These preferences are difficult to elicit, 
and planners have to make more than one decision at a 
time, contradicting the view that making linked deci-

sions is rare (Keeney, 2004). In short, planning 
problems are ill-defined (Hopkins, 1984); therefore, 
their solution algorithm must be different from those 
of well-defined problems. Traditional techniques 
developed in decision analysis, such as the decision 
tree, focus on single decision makers with unidimen-
sional attributes, such as utility, evaluating a given set 
of alternatives to select the best. In real situations, the 
complex nature of planning problems renders such 
techniques less useful than expected in helping deci-
sion makers figure out what to do. As an alternative to 
traditional techniques, we propose here a theoretical 
foundation for a technique called Decision Network 
for making multiple, linked decisions that involve 
multiple stakeholders with multi-attribute preferences. 
Decision Network is derived mainly from the ideas of 
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the decision tree (Kirkwood, 1996), the strategic 
choice approach (Friend and Hickling, 2005), and the 
garbage can model (Cohen et al, 1972). A detailed 
description of the conceptual framework of Decision 
Network was provided by Han and Lai (2011), to-
gether with a description of its application to the 
management of urban growth boundaries (Han and 
Lai, 2012). Here, we provide a formal, general for-
mulation of that framework and describe a solution 
algorithm for that formulation. 

This paper is structured as follows: Section 2 
gives the formulation of Decision Network. In Sec-
tion 3, we show an efficient solution algorithm for 
that formulation, followed in Section 4 by a numerical 
example to demonstrate how the algorithm works. In 
Section 5, we compare the decision tree model with 
Decision Network in representing linked decisions, 
and discuss possible extensions of the current for-
mulation. In Section 7, we provide conclusions. 
 
2  Formulation 
 

Consider m decision makers eligible to attend 
any of n decision situations. Decision makers are 
individuals or coherent groups with authority and 
capability to make decisions. Decision situations are 
the choice opportunities in which problems and solu-
tions are discussed and evaluated by the decision 
maker(s). Assume that there are p problems and q 
solutions under consideration. A utility is the affected 
individual’s (or stakeholder’s) level of satisfaction 
imposed by decision makers, problems, and solutions 
in a decision situation. Whether a decision is made in 
a decision situation depends on whether the amount of 
utility supplied exceeds the utility demanded by that 
decision situation. Thus, utility can be either positive 
or negative (disutility). Note that decision situations 
can be either deterministic (denoted as decision nodes) 
or stochastic (denoted as chance nodes), meaning that 
some decision situations are pre-determined, whereas 
others are probabilistic in occurrence. Given these 
definitions, we can define the variables and parame-
ters of the Decision Network problem as shown in 
Table 1. 

With these variables and parameters, there are 
three structures in a Decision Network: namely, the 
decision structure, access structure, and solution 
structure. All the structures are represented by 0-1 
matrices. The only difference is that the rows in these 
matrices are decision makers, problems, and solutions, 
respectively, with the column being decision situa-

tions. A “1” in these matrices implies that the element 
in the row is related to the decision situation in the 
corresponding column, whereas a “0” means that no 
such relationship exists.  
 

Table 1  Definition of variables and parameters  
of the formulation 

Terminology Notation Probability Utility 

Decision situations    

Decision node 1 d1 1.0  not applicable 

Decision node 2 d2 1.0  not applicable 

Decision node 3 d3 1.0  not applicable 

    

Decision node i di 1.0  not applicable 

Chance node i+1 di+1 pi+1 not applicable 

Chance node i+2 di+2 pi+2 not applicable 

Chance node i+3 di+3 pi+3 not applicable 

    

Chance node n dn pn not applicable 

Decision makers    

Decision maker 1 m1 not applicable u1 

Decision maker 2 m2 not applicable u2 

Decision maker 3 m3 not applicable u3 

    

Decision maker m mm not applicable um 

Problems    

Problem 1 r1 not applicable v1 

Problem 2 r2 not applicable v2 

Problem 3 r3 not applicable v3 

    

Problem p rp not applicable vp 

Solutions    

Solution 1   s1 not applicable w1 

Solution 2  s2 not applicable  w2 

Solution 3  s3  not applicable w3 

    

Solution q sq not applicable wq 

For example, in the decision structure, if the 
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value of the cell in row three (e.g., a planner) and 
column five (e.g., a public hearing) is 1, it means that 
the planner is eligible to participate in the public 
hearing for decision making. The generic forms of the 
three matrices are shown in Tables 2 to 4.  
 

Table 2  The 0-1 matrix for decision structure 
Notation d1 d2 d3 … dn 

m1 a11 a12 a13 … a1n 

m2 a21 a22 a23 … a2n 

m3 a31 a32 a33 … a3n 

        … 
  

mm am1 am2 am3 … amn 

 
Table 3  The 0-1 matrix for access structure 

Notation d1 d2 d3 … dn 
r1 b11 b12 b13 … b1n 

r2 b21 b22 b23 … b2n 

r3 b31 b32 b33 … b3n 

        … 
  

rp bp1 bp2 bp3 … bpn 

 
Table 4  The 0-1 matrix for solution structure 

Notation d1 d2 d3 … dn 
s1 c11 c12 c13 … c1n 

s2 c21 c22 c23 … c2n 

s3 c31 c32 c33 … c3n 

        … 
  

sq cq1 cq2 cq3 … cqn 

 
Note that aij∈{0,1}, for i = 1, 2, 3, . . . , m and j = 

1, 2, 3, . . ., n; that bij∈{0,1}, for i = 1, 2, 3, . . . , p and 
j = 1, 2, 3, . . ., n; and that cij∈{0,1}, for i = 1, 2, 3, . . . , 
q and j = 1, 2, 3, . . ., n. 

The variables and parameters in Table 1, to-
gether with the structural constraints specified in 
Tables 2 to 4, form the basic information for the De-
cision Network problem, which can be represented in 
a directed graph, as demonstrated by Han and Lai 
(2011) in a numerical example.  

The task is then to make a “plan” by assigning 
the given m decision makers, p problems, and q solu-
tions to n decision situations to yield the highest 
overall expected utility under the structural con-
straints. Mathematically, this assignment task can be 
easily formulated as a 0-1 integer program, as shown 
below: 
 

( )11 11Max n p qm
j ij i kj k l lj lj kip x u y v z w=== = + +∑∑ ∑ ∑  

s.t. 1 1n
j kjy= =∑ , for  1,  2,  3, ,  k p= …  

1 1n
j ljz= =∑ , for  1,  2,  3, ,  l q= …  

where 1jp = , if jd  is a decision node;  

otherwise, 0 1jp< < , 

and , , 0,1ij kj ljx y z = , for  1,  2,  3, ,  j n= …             (1) 

 
Note that in Eqs. (1), the two constraints require 

problems and solutions to be assigned to one, and 
only one, decision situation. Also note that Eqs. (1) 
are problem dependent in that the objective function 
changes in relation to the three structural constraints 
specified in Tables 2 to 4 for each given Decision 
Network problem under consideration. 
 
3 Solution algorithm 
 

For a small- or medium-sized problem, solving 
Eqs. (1) is straightforward using a commercial 
package, such as LINDO. When the problem size 
becomes large enough to involve thousands of deci-
sion makers, problems, solutions, and decision situa-
tions, it would be cumbersome to construct the model 
and solve it through LINDO. An algorithm for solv-
ing large models involving sequential decisions under 
uncertainty proposed by Kirkwood (1993) could be 
applied. However, that would require the modeler to 
reconstruct the Decision Network problem into a 
decision tree. With thousands of variables and pa-
rameters, as shown in Table 1, this reconstruction 
would render the solution algorithm inextricable. 
Alternatively, we develop here a solution algorithm 
that is specific for solving large-scale Decision Net-
work problems. 

Consider the matrices in Tables 2 to 4 and denote 
them as D, A, and S respectively, as shown below: 
 

11 1 11 1

1 1

11 1

1

, ,

.

n n

mn pnm p

n

qnq

D
a a b b

A
a a b b

c c
S

c c

=

  
   =   

      
 
 
 
 
 

=



  





  





  



           (2) 

 
Furthermore, suppose that e and ek are the unit 

matrix and the k-th unit matrix, respectively, where 
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the k-th unit vector in the k-th unit matrix is equal to 
one or zero. Note that e′ and e′k are the transpose of e 
and ek respectively. For more details on these sym-
bolic representations of the unit matrix and k-th unit 
matrix, see Eqs. (3) as follows: 
 

[ ] [ ]

0

1

0

1

, 1 1 1 , , 0 1 0 .1

1

' 'k ke e e e

  
  
  
  = = = =
  
  
  

   



   







                                      

(3) 
 

The following steps summarize and describe the 
solution algorithm. 
Step 1: Retrieve the row vectors for the access 
structure. That is, pi = e′i ⋅A, where pi denotes the 
vector of the i-th row, for i = 1, 2, 3, . . . , m. 
Step 2: Identify the number of elements for each row 
where the values of the elements are equal to 1 to 
obtain aΩ decomposed matrices. That is, ui = {pij = 1, 
for j = 1, 2, 3, . . . , n}, for i = 1, 2, 3, . . . p, where ui is 
the set of indices of columns for row i where the el-
ement pij is equal to 1. Note that iu〈 〉  is the number of 
elements in set ui which by definition is greater than 
or equal to 1 for all i. Let aΩ be the number of all 
combinations of non-zero elements across the rows 
for the access structure, with one, and only one, 
non-zero element in each row, and we have: 
 

1 2 3a mu u u uΩ = 〈 〉× 〈 〉 × 〈 〉 × ×〈 〉
                          (4) 

 
Each combination stands for a matrix where 

each row has one, and only one, element whose value 
is equal to 1. 
Step 3: Decompose the solution structure following 
Steps 1 and 2 to obtain sΩ decomposed matrices. 
Step 4: For each combination of the decomposed 
matrices of the access and solution structures, com-
pute the overall expected utility and select the com-
bination that yields the highest overall expected util-
ity as the solution. That is, there are a total of 

saΩ ×Ω combinations of decomposed matrices 
across the access and solution structures. For each 
combination, we can compute the overall expected 

utility by summing the expected utility for each de-
cision node. Mathematically, for each decision (or 
chance) node, the expected utility is equal to: 
 

( ) ,i jl il jl k klu v wp + +∑ ∑ ∑                                    (5) 

 
where uil, vjl, and wkl are the (dis) utilities for the de-
cision maker (s), problem (s), and solution (s) asso-
ciated with decision node l in the decision, access, and 
solution structures, respectively, and pl is the proba-
bility that a decision (or chance) node l obtains. 
 
4 Numerical example 
 

Following Han and Lai (2011), we use the same 
numerical example here to show how the algorithm 
works. Assume that D, A, and S are given as follows: 
 

0 1 0 0 1
0 1 1 0 1

, 0 0 0 1 0 ,
1 0 0 1 0

0 0 1 0 0

0 1 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 1

.

D A

S

 
   = =      

 
 
 
 =
 
 
 

 

 
Assume further that the probabilities associated 

with the five decision (chance) nodes are 1.0, 1.0, 1.0, 
0.7, and 0.5, respectively, that the utilities associated 
with the two decision makers are 0.7 and 0.3, respec-
tively, that the disutilities associated with the three 
problems are –0.6, –0.5, and –0.7, respectively, and 
that the utilities associated with the four solutions are 
0.6, 0.3, 0.7, and 0.5, respectively. We first show how 
the access structure is decomposed according to Steps 
1 to 3 and finally demonstrate how the solution is 
obtained. 
 
Step 1: Retrieve the row vectors for the access 
structure. 

( ) ( )
( )

1 2

3

0 1 0 0 1 , 0 0 0 1 0 ,

0 0 1 0 0 .
p p

p

= =

=
 

 
Step 2: Identify the number of elements for each row 
where the values of the elements are equal to 1 to 
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obtain aΩ decomposed matrices. 

{ } { } { }1 2 32,5 , 4 , 3 .u u u= = =  
2 1 1 2aΩ = × × = , and we have: 

 

1 2

0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 , 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0

.A A
   
   = =   
   
   

 

 
Step 3: Decompose the solution structure following 
Steps 1 and 2 to obtain sΩ decomposed matrices.  
 

s 2 1 1 2 4Ω = × × × = , and we have: 
 

1 2

3 4

0 1 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0

, ,
0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0

,
0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1

.

S S

S S

   
   
   = =
   
   
   
   
   
   = =
   
   
   

 

 
Step 4: For each combination of the decomposed 
matrices of the access and solution structures, com-
pute the overall expected utility and select the com-
bination that yields the highest overall expected util-
ity as the solution. Take the combination of A1 and S3, 
for example. Let U(ni) denote the total expected util-
ity for decision node i, for i = 1, 2, 3, 4, and 5. We 
have: 
 

( ) ( )

( )

1

0.6
0.7

( ) 1.0 0 1 1.0 0 0 0 0.5
0.3

0.7

0.6
0.3

1.0 0 1 0 0 0.3 0.0 0.3 0.6 ;
0.7
0.5

U n
− 

   = × × + × × − +      − 
 
 
 × × = + + =
 
 
 

 

( ) ( )2

0.6
0.7

( ) 1.0 1 0 1.0 1 0 0 0.5
0.3

0.7
U n

− 
   = × × + ⋅ × − +      − 

 

 

( )

0.6
0.3

1.0 0 0 0 0 0.7 0.6 0.0 0.1 ;
0.7
0.5

 
 
 × × = − + =
 
 
 

 

( ) ( )

( )

3

0.6
0.7

( ) 1.0 1 0 1.0 0 0 1 0.5
0.3

0.7

0.6
0.3

1.0 1 0 0 1 0.7 0.7 (0.6 0.5) 1.1 ;
0.7
0.5

U n
− 

   = × × + × × − +      − 
 
 
 × × = − + + =
 
 
 

( ) ( )

( )

4

0.6
0.7

( ) 0.7 0 1 0.7 0 1 0 0.5
0.3

0.7

0.6
0.3

0.7 0 0 1 0 0.21 0.35 0.49 0.35 ;
0.7
0.5

U n
− 

   = × × + × × − +      − 
 
 
 × × = − + =
 
 
 

( ) ( )

( )

5

0.6
0.7

( ) 0.5 1 0 0.5 0 0 0 0.5
0.3

0.7

0.6
0.3

0.5 0 0 0 0 0.35 0.0 0.0 0.35 .
0.7
0.5

U n
− 

   = × × + × × − +      − 
 
 
 × × = + + =
 
 
 

 
Therefore, for the combination of A1 and S3, the 

overall expected utility across the five decision nodes 
is 0.6 + 0.1 + 1.1 + 0.35 + 0.35 = 2.5. The overall 
expected utilities for other combinations of the access 
and solution structures can be computed in a similar 
way. The best “plan,” or combination, of the access 
and solution structures is the one that yields the 
highest overall expected utility, which in this example 
is A2S1 or A2S3, which yield an overall expected util-
ity of 2.8. 
 
5 Discussion 
 

One might ask what the benefits are of using 

unedited



Lai and Huang / Front Inform Technol Electron Eng 6 

Decision Network compared to a decision tree in 
solving complex problems. The following hypothet-
ical planning problem shows how Decision Network 
and a decision tree frame the problem differently 
while coming up with the same answer (Hopkins, 
2001). Consider a residential construction project 
consisting of two decisions: infrastructure and hous-
ing constructions. These two decisions fall within the 
authority of two decision makers, namely the infra-
structure provider and the housing builder. Assume 
that the infrastructure provider could construct either 
a high-density system of 500 units on 100 acres or a 
low-density system of 500 units on 250 acres; the 
housing builder could construct a high-density 
community of 500 dwelling units on 100 acres or a 
low-density community of 200 dwelling units on 100 
acres. 

Based on decision tree analyses, Hopkins (2001) 
was able to demonstrate algebraically that making 
plans by simultaneously considering the two deci-
sions, namely infrastructure and housing decisions, 
yields more benefits in monetary terms than making 
these decisions independently. Without delving into 
detailed numerical calculations, we show here that 
considering multiple stakeholders in a Decision 
Network framework reinforces Hopkins’s argument 
that making multiple, linked decisions matters. First, 
the infrastructure decision node can be represented by 
the diagram shown in Figure 1. 
 

 
Fig. 1  The Decision Network diagram for the infrastruc-
ture decision. 
 

In Figure 1, the circle denotes the decision situ-
ation, in which there are two options: high-density or 
low-density development. The decision maker (in-
frastructure provider), the problem (infrastructure 
demand), and the solution (infrastructure construction) 
are associated with the three inward arrows, whereas 
the arrow emanating from the decision situation rep-

resents the outcome—that is, high-density develop-
ment in this case, according to Hopkins’s original 
calculations (Hopkins, 2001). Similarly, the housing 
decision represented in the Decision Network 
framework is shown in Figure 2. Note that the hous-
ing builder should choose low-density development, 
if the situation is considered independently, given a 
set of unit costs and revenues for different types of 
development (Hopkins, 2001). 
 

 
Fig. 2  The DN diagram for the housing decision. 
 

Figure 3 shows that when the two decisions are 
considered simultaneously, the decision outcome for 
the infrastructure changes from high-density to 
low-density development, whereas the decision out-
come for the housing builder remains the same. 
 

 
Fig. 3  The DN diagram for the infrastructure and housing 
decisions combined. 
 

Note that, in Figure 3, the outcome of the infra-
structure decision becomes one of the four inputs of 
the housing decision. Compared with the decision tree 
representation, the Decision Network diagram is 
more succinct, more flexible, and richer, while con-
veying more information. For example, in the two 
diagrams for the infrastructure and housing decisions, 
we can add more information about the options inside 
the decision situations, the infrastructure and housing 
demands, and the infrastructure and housing supplies 
without altering the diagrams significantly, which is 
not the case in a decision tree analysis. These ad-
vantages become more significant when the size of 
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the problem is large and involves hundreds or thou-
sands of decision nodes. Of course, a deductive 
comparison of effectiveness between the Decision 
Network and decision tree frameworks begs future 
work. 

We have not delved into the multi-attribute 
preferences that characterize most planning problems, 
but a straightforward extension of the exiting formu-
lation of Decision Network would, in theory, suffice 
to cover this issue. One way of doing this is to replace 
the unidimensional utilities, that is, ui, vj, and wk, with 
multi-dimensional utilities (Keeney and Raiffa, 1993). 
Considerable literature exists on multi-attribute deci-
sion making, which we cannot delve into here be-
cause of limited space. However, the literature pro-
vides a basis for future exploration of incorporating 
multi-attribute preferences into the Decision Network 
technology. 

Most planning problems deal with spatial issues. 
In its current form, Decision Network can easily be 
modified to incorporate the spatial dimension into its 
formulation. Specifically, we can add a fourth ele-
ment—locations—into the decision situation, in ad-
dition to problems, solutions, and decision makers, 
together with a spatial structure linking those loca-
tions to decision situations. This has been done in an 
attempt to simulate how an urban system works, 
based on the garbage can model that was originally 
proposed by Cohen et al. (1972) and Lai (2006). The 
solution algorithm introduced here remains the same, 
regardless of the addition of the spatial dimension to 
the Decision Network formulation. 

It is arguably true that, because the real world is 
non-linear, the linear model of Decision Network 
described in the 0-1 integer program in Eqs. (1) is far 
from being realistic. We agree that the model does not 
map reality faithfully, since reality is far more com-
plex than what can be described mathematically. 
However, the 0-1 integer program simplifies the real 
problem and serves as a good, approximate basis from 
which promising solutions can be derived through 
means other than mathematics, such as graphic and 
verbal communications. In other words, to take ad-
vantage of the problem-solving logic presented in this 
paper, Decision Network could be developed into a 
fully-fledged technology to incorporate means of 
problem solving, whether mathematical or 
non-mathematical, in dealing with complex planning 

problems. 
 
6 Conclusions 

Planning problems are characterized by diffi-
culty and complexity. Traditional decision analysis 
techniques that are commonly used by planners are 
overwhelmingly focused on making independent 
decisions for single decision makers. Effective plan-
ning tools must address multiple stakeholders and 
multi-attribute preferences at the same time. Here, we 
provide a theoretical basis for Decision Network, 
which attempts to make multiple, linked decisions 
with multiple stakeholders and multi-attribute pref-
erences. In its current form, Decision Network is by 
no means a mature planning tool because much am-
biguity remains to be worked out. With sufficient and 
persistent effort, the theoretical foundation introduced 
here could serve as a starting point for development 
into a fully-fledged technology that helps planners 
deal confidently with challenging planning problems. 
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